Atmosphere
- Created by: Emmajayne798
- Created on: 21-04-16 17:12
Intro
Earth has a well developed atmosphere- consists of a mixture of gases called air
Density + pressure variations cause air motion- the wind
The atmosphere governs physical conditions of weather: temperature, pressure, moisture content, wind velocity, wind direction.
Climate is long term weather conditions
Evolution through time
4.6bn years ago- earth formed
early atmosphere- hydrogen + helium, volcanic eruptions added gases
3.5 Ga - Photosynthetic cyanobacteria added free 02 + Atmospheric o2 accumulated
By 2 Ga- o2 reached 1% of present value
Eukaryotic green algae 1.6 Ga accelerated o2 production. By 600ma o2 arrived at 20% current conditions
Present o2 by 65 ma (21% atmospheric concentration)
Atmosphere supports life
O2 made the formation of an ozone layer possible- absorbs deadly UV radiaiton and prevents it from sterlising the surface of the Earth.
Allowed diversification of life- especially in terrestrial environments
Present atmosphere = 78% Nitrogen, 21% Oxygen; Other=1%
Other includes: Argon, Carbon dioxide, Sulfur dioxide, Ozone and Radon
Aerosols are tiny suspended particles <1 micrometer. Can be liquid droplets or solid dusts and can influence the insolation received by the Earth by reflecting infra-red radiation back out into splace.
Our effect: Pollution
Humans add gases and aerosols from fossil fuel combustion + industrial processes
Environ,ental harm- acid rain (from sulfates and nitrates acidfying precipitation)
- Enhanced Greenhouse effect- CO2 and CH4 trap atmospheric heat.
Pressure and density
Air pressure- force due to the weight of overlying air
- greatest near the Earth's surface because all the atmosphere is piled aboe
- 1 atm @ sea level = 1013mbar
Air density= mass of air/volume
- Maximum at sea level
- Decreases upward
Temperature & air
As air rises it expands+ cools, holding less water
As it descends it contracts+warms, absorbing more water
This is called adiabatic cooling + heating
Relative humidity
Water content is described by the relative humidity
Ratio (%) of measured water content compared to the maximum possible
Air with 100% relative humidity= saturated
Air with less than 100% than relative humidity=undersaturated
Dry desert air- 0.3% water - Low relative humidity
Humid tropical rainforest air- 4% water- High relative humidity
Maximum moisture content changes with temperature. Cold air holds less moisture, warm air holds more. Warm undersaturated air becomes saturated as it cools- dewpoint. Below the dewpoint- water forms dew on surfaces + water freezes to form frost.
Clouds
Rising air adiabatically cools to form tiny water droplets
Millions of tiny droplets join together to form cloud
They can also dissipate adiabatically.
Atmospheric layers
Thermal layers
Troposphere (first 12km): Mixing layer- all weather occurs here. Thinner at poles (9km) and thicker at equator (12km). Temperature slowly decreases upwards to -55 degrees celsius.
Tropopause- temperature stabalizes
Stratosphere (12km-39km): Does not convect. T = consistent for 10km. Then warms to 0 degrees C.
In the mesosphere the temperature cools again.
Ionosphere: 60-400km- solar energy creates positive ions by ********* electrons from N and O. The charged particles from solar flares interact in the ionosphere and are funneled to the poles by the Earth's magnetic field. Northern lights (Aurora borealis), Southern lights (Aurora australis).
Origins of the wind
Troposphere experiences almost constant motion
Movement of air from one place to another = wind
Lccal- 10's to 1000s km
Global - scale that encircles the planet e.g jet stream
Solar energy is not equally distributed- vertical rays on tropics=hotter-air rises. At poles- sunlight=oblique - less insolation. This differential solar heating drives convection.
Thermal convection. Warm air expands, becomes less dense and rises- this creates a void and air flows in, replaced by sinking, cooler, more dense air.
Lateral pressure differences drive horizontal winds. Air flows from high P to low P perpendicular to isobars which show areas of equal P. The steeper the gradient- the faster the winds.
Wind complications - Coriolis effect
Coriolis effect- Earth's rotations cause the prevailing winds to be deflected
"A phenomenon that causes fluids like water and air to curve as they travel across or above the Earth's surface."
Earth is constantly spinning around its axis from west to east. But because the Earth is a sphere- the equator is spinning faster than the poles.
In the Northern hemisphere this is to the right. This is why storms spin anti-clockwise around the eye of the storm.
In the southern hemisphere this is to the left . Storms spin clockwise.
This occurs no matter which direction the wind is moving in to begin with within each hemisphere
Air cells
If the Earth did not spin- we would have 2 convection cells- air rising at equator and sinking at poles
But instead- we have 3!: Hadley, ferrel and polar in each hemisphere
Low pressure at equator/ low latitudes (30o N and 30oS) due to rising equatorial air- forms from converging air- winds are deflected towards the equator- meet (intertropical convergence zone/doldrums) air= forced up. air cools and condenses- wind moves air North + south- rain- tropical rain forests either side of the equator.
High pressure at horse latitudes due to descending air- air spreads out- divergence zone
Low pressire at subpolar highs due to more convergence
before polar highs
Jet streams
At high altitudes over the polar front and horse latitudes- air masses of different temperatures come into contact.- Steep pressure gradient forms-
Fast-flowing, high-altitude westerly winds known as jet streams
200-400km/hr
Weather
Local scale conditions of temperature, pressure, humidity and wind speed
Reflects the prevailing winds and variations in the topography, water and vegetation
A weather system may affect an area for a small period of time
Air masses
Weather is controlled in part by meeting air masses-
Packages of air with unique, recognizable properties- reflecting their original locations e.g. cold air mass from poles etc
over a couple 1000km in width- Flow across a region for a couple of days
Contact/boundary= called a front
Cold- where cold air replaces warm air.Cold dense air flows underneath and pushes warm up. Moisture released makes big thunderstorms.
Warm- where warm air replaces cold air.+ Warm air flows up a gentle incline over the colder air-pushes the cold air away as a wedge. Less steep T and P gradients. Broad cloud cover.
Occluded- where fast moving cold fronts overtake warm fronts. cold front lifts warm from ground- strong winds and heavy precipitation are produced.
Rotational flow
High pressure systems:
- As air flows from high pressure to low pressure- a void is created
- This is filled by cold dry air being pulled down from above- as the air compresses it warms and "wicks"? up moisture.
- Therefore associated weather is often clear + dry.
- Also known as Anticyclonic flows
Low pressure systems:
- Air piles up in the centre- sucked up and cools- condensing as clouds- rain. cloudy, rainy weather.
- Also known as cyclonic flow
The flowing air develops a spiral motion due to the coriolis effect
In the nothern hemisphere: Anti-cyclonic flows= clockwise; Cyclonic= clockwise.
Cloud formations
Air lifting mechanisms
Convective- where warmed air is buoyed upwards
Frontal- when air is carried upwards along fronts-
Convergence- When two converging air masses push each other up
Orographic- air is pushed up when it meets mountains
Clouds form in the troposphere- the type that forms is controlled by air stability, the elevation+ wind
Shape: Cirrus (wispy, thin, feathery); Cumulus (puffy, cottony); Stratus (stable, layered)
Prefixes: Cirro (high altitude); Alto (mid-altitude); Nimbo (rain producing)
Unstable air= vertically building cumulus clouds e.g. Cumulonimbus- immense rain clouds
Hurricanes
Storms are episodes of severe weather- producing lightning, wind, rain, hail, sleet and/or snow
Develop along steep pressure gradients, fuelled by warm moist air. Named after wind speeds >60km/h.
At lower latitudes <20o N - Hurricanes form. - Huge low pressure/cyclonic storms over the warm, tropical ocean waters. They do not form near the equator due to insufficient lateral winds.
Hurricanes develop in summer/late fall when low p tropical disturbances pull air inward- as the air rises and cools it produces heat which pulls in more air and creates even lower pressure- over time the storm builds in size and strength.
- Size range 100-1,500km
- Speed >119km/h
Landfall of storms removes the storm fuel of warm, moist air.
Hurricane damage
High velocity winds- destroy infrastructure + buildings
Waves- can create enormous waves + storm surges
Intense rainfall can cause flooding and mudslides
Saffir- simpson scale ranks intensity according to wind speed (km/h), pressure (millibars) and damage.
- 1- Minimal- <119km/h wind speeds. No building damage. 1.5m storm surge. Branches broken.
- 2- Moderate- Some trees blown down. Mobile homes seriously damaged. 2.4m storm surge
- 3- Extensive- Some structural damage to small buildings.
- 4- Extreme- Some roofs completely destroyed. Evacuation up to 10lm from coast.
- 5- Catastrophic - over 250km/h wind speeds + coast up to 16km evacuation
Comments
No comments have yet been made